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ABSTRACT that teaches users how to perform mindfulness meditation and

In this research, we aim to develop a training system that al-
lows individuals to control their own stresses autonomously.
For this, we propose a sound presentation agent that provides
adaptive training according to the user’s stress state with ob-
servations of probabilistic environment states using reinforce-
ment learning and multimodal biological signals. In addition,
we verify the superiority of using multimodal biological sig-
nals through a simulation experiment and evaluate the sys-
tem. From the results, it is seen that the agent presents more
appropriate sounds using biological signals having different
features extracted from the same source signal. In future, we
will conduct subject experiments based on the results of this
research and compare those results with the simulation results
in order to confirm the validity of the simulation.
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INTRODUCTION

The excessive stress in social life causes decrease in pro-
ductivity and the onset of disease. In order to reduce such
negative influences, it is necessary for each individual to ac-
quire ways to control their own stresses autonomously. Mind-
fulness meditation is one way to realize this, and there are
many support systems for performing mindfulness meditation
[9][10]. Such systems are mainly divided into two types: one
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the other that estimates the proficiency or state of mindful-
ness meditation from the user’s biological signals. Following
these previous studies, we focus on developing a stress con-
trol training system based on mindfulness meditation. Al-
though many researchers have tried to construct a support
system for mindfulness meditation, a system that adaptively
changes the training policy based on the states of stress es-
timated from a user’s reaction has not yet been realized. To
overcome this problem, we have developed a system to sup-
port the acquisition of stress control.

This training system employs a sound presentation agent,
which uses a stimulus sound assumed to bring the user to a
high or low stress state, and makes the user try and maintain
that stress state at a constant level. In addition, it changes the
stimulus sound load according to the estimated stress state of
the user in order to make the training more efficient. We as-
sume that users’ stress state can be estimated from the noise
and delay of biological signals. Thus, the estimation involves
both fluctuations caused by training effects and probabilistic
factors.

In this research, we aim to construct a training system that
adapts to the user’s stress state through observations of prob-
abilistic environment states, and to study the framework of
reinforcement learning using multimodal biological signals.
In addition, we perform simulation experiments with the gen-
erated biological signals using a probabilistic model, which
utilizes the stress values of the user model as the parameters,
in order to evaluate the framework of reinforcement learning.

OBSERVATIONS OF BIOLOGICAL SIGNALS

The partially observable Markov decision process (POMDP)
is an extension of the Markov decision process (MDP), and
consists of tuples of <S, A, T, R, Q, O>. The first four ele-
ments express the Markov decision process (S: State, A: Ac-
tion, T: Transition, and R: Reward), and the later two are finite
observations and probability distributions of results based on
each state and action. In POMDP, the agents cannot observe
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the state of the environment directly. Instead, the agents ob-
serve the probabilistic state of the environment based on their
actions and their results.

Our sound presentation agent estimates the stress state of
the user based on two different types of biological sig-
nals: Electroencephalogram (EEG) and Electrocardiogram
(ECG).Among the several indices calculated from EEG, we
select the occipital alpha activity as the stress index, because
this signal indicates a global neural activity related to the sub-
jective arousal level [2]. Though the signals from EEG con-
tain a large amount of noise, which are caused by sources
other than neural activity such as movements of the eyes and
the body [6], it has an advantage in terms of reactivity; EEG
signals are generated rapidly after the occurrence of neural
events [1].

With regard to ECG, we assume that LF/HF (Low Fre-
quency/High Frequency) partially reflects the stress state of
the user. LF/HF is regarded as an index of the sympathetic
nervous system activity, and it incorporates a relatively small
amount of noise as compared to EEG. However, since the cal-
culation of this index needs longer sampling time, this index
is necessarily a mixture of the stress that has occurred during
several time points.

Therefore, in our sound presentation agent, two different
POMDPs are involved: one for the influence of large noise in
the alpha activity and the other for the mixture of past stress
states in LF/HF. Considering these characteristics of each bi-
ological signal, we hypothesized that combining these two
signals improves the accuracy of stress estimation.

STRESS CONTROL TRAINING SYSTEM

In our training system, the users are required to control their
stress to bring the alpha activity and the LF/HF closer to a cer-
tain baseline while they are exposed to one of the two sound
stimuli (low/high stress sounds). In this study, the baseline is
set to the average value of each biological signal for a fixed
time in the natural state. To guide the user’s stress state to
the baseline, the sound presentation agent presents high stress
sounds when the agent estimates the user’s stress state as low,
and low stress sounds when the agent estimates it as high.

In order to change the training policy of the agent adaptively
according to the user’s stress state, we use reinforcement
learning. The value function of the user’s stress state and
the sounds presented by the agent are updated by Q learn-
ing, which is a basic framework of the reinforcement learning
used in POMDP:

O(s,a) = Q(s,a) + a(r+vQ(s',a') — Q(s,a)). €))

In the framework of the proposed reinforcement learning, the
state s takes one of the four states, combining the higher
of the states lower than the baseline of alpha activity with
LF/HF. Action a is selected from the high stress or low stress
sound presentation. s’ and a’ are the states and actions after
the sound presentation, respectively. The reward r is positive
when the observed alpha activity and LF/HF values are close
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Figure 1. Relationship between the sound presentation agent and the
user. The agent estimates the user’s stress state through EEG and ECG
with probabilistic fluctuation.

to the baseline, and is negative when the observed alpha ac-
tivity and LF/HF values are far from the baseline. « is the
learning rate, and 7 is the discount factor.

SYSTEM ARCHITECTURE

The sound presentation agent is incorporated into the system,
which is created based on an existing research [7]. As shown
in Fig. 1, Emotiv EPOC*, which is an electroencephalograph
manufactured by EMOTIV, records the EEG, and myBeat,
manufactured by UNION TOOL, records the ECG. In this
system, during training, the users close their eyes and at-
tempt to control their own stress while being exposed to the
high/low stress sounds. The users engaged in this training,
at least for a 10 min session at a time. In one session, there
are 100 trials in which the same sound lasts for 6 s. For each
trial, the agent updates the sound presentation policy with re-
inforcement learning based on the observed biological signals
and determines the next presentation sound.

SIMULATION EXPERIMENT

We evaluate the above sound presentation agent through sim-
ulations, although an experiment with human participants is
needed to evaluate the agent, because a large number of par-
ticipants are required to eliminate the influence of individual
differences, which are assumed to be especially large in the
case of biological signals. Before conducting human experi-
ments, it is reasonable to conduct a simulation experiment to
examine the experimental settings, such as the required per-
formance of the measuring device for biological signals, or
the trials needed for the training of stress control.

In this simulation, the user model is used as a substitute for
human participants. We set the baseline of the stress value
for the user model to 50, and use it as the initial value. This
stress value shifts in the range 0-100. It increases by 10 when
a high stress sound is presented, and decreases by 10 when a
low stress sound is presented. The alpha activity and LF/HF
used in the simulation are probabilistically generated from the
normal distribution [3][4]. The parameter p of the normal
distribution expresses the stress value of the user model, and
o expresses the noise (o is 30 for alpha activity and 10 for
LF/HF). The u of LF/HF is taken as the average of the stress
values for 5 trials, in order to simulate the mixture of past
stress states.



For the above user model, the sound presentation agent per-
forms "estimate of stress state,” "selection of presentation
sound," and "sound presentation.” Considering this as one
trial, one simulation run repeats 500 trials equivalent to 5
sessions. We conducted 50 simulation runs for each of the
following five simulation conditions: using both alpha activ-
ity and LF/HF, using alpha activity or LF/HF only, and using
alpha activity or LF/HF twice, both of which are generated
from the same probability model.

Moreover, in order to verify the extent to which the frame-
work of reinforcement learning using alpha activity and
LF/HF allows the noise of alpha activity, the same simulation
is conducted with five kinds of normal distribution of alpha
activity: o =10, 20, 30, 40, and 50.

RESULTS

Fig. 2 shows how the stress state of the user model is changed
through the training guided by the sound presentation agent.
In order to show how much the agent is able to influence the
stress value of the user model so that it approaches the base-
line, the vertical axis of the figure indicates the moving aver-
age of the distance between the stress value in the user model
and the baseline defined as follows:
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where W is the window size for calculating the average, N is
the number of runs used for the average, and B is the baseline
of the stress value for the user model. In this study, we set
W =100, N = 50, B = 50, and employed three conditions,
varying the type of biological signals used by the agent: "al-
pha + LF/HF" where the agent uses both the signals to es-
timate the stress (the red line), "alpha" where the agent uses
only alpha (the green line), and "LF/HF" where the agent uses
only LF/HF (the blue line). From the figure, we can observe
that the smallest distance is obtained for "alpha + LF/HF"
throughout the training sessions, which indicates the advan-
tage of using multimodal biological signals to stabilize the
stress value.

Although Fig. 2 successfully illustrates the advantage of the
proposed framework, we need to note that the frequencies of
observation were different for different conditions. To ensure
uniformity in an effect of the frequency of observations, we
added two more conditions, where the agent uses each uni-
modal signal twice in each trial ("alpha + alpha" and "LF/HF
+ LF/HF"). Fig. 3 compares the results from these two condi-
tions with the "alpha + LF/HF" condition, showing a smaller
distance for the multimodal condition.

In Fig. 4, we show the distance of the "alpha + LF/HF" con-
dition by varying ¢ of the alpha activity. From this figure, we
observe that the smaller o is, the more adequately the sound
presentation is performed. Importantly, there is only a small
difference in the distance between 30 and 40, whereas there
is a large difference between 20 and 30.
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Figure 2. Average and standard error for each set of 100 trials for the
distance between user’s stress value and the baseline through 50 simu-
lations (red line: alpha activity + LF/HF, green line: alpha activity only,
and blue line: LF/HF only).
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Figure 3. Average and standard error for each set of 100 trials for the
distance between user’s stress value and the baseline through 50 simula-
tions (red line: alpha activity + LF/HF, green line: alpha activity + alpha
activity, and blue line: LF/HF + LF/HF).

DISCUSSION

The previous section presents several important findings for
the future research. The first finding is the advantage of using
multimodal biological signals. So far, the past studies have
demonstrated the effectiveness of multimodal biological sig-
nals for the estimation of emotion and stress state [5][8]. Con-
sistent with such experimental studies, our simulation study
used probabilistic distributions to represent different biolog-
ical signals, indicating the superiority of observing multi-
modal biological signals. Especially, our study suggests that
multimodal biological signals were better at helping the agent
estimate the stress state than several observations of unimodal
signals (Fig. 3). This result indicates that multimodal biolog-
ical signals covering different aspects of a common source
are complementary to each other, suggesting that the selec-
tion of the type of biological signals is important in designing
an effective training system.

The second important finding is related to the verification of
the intensity of noise in biological signals that can be accepted
by the system. In experiments with human participants, it is
impossible to manipulate such a hypothetical biological pa-
rameter directly. In contrast, in a simulation experiment, ev-
ery parameter is explicitly defined, and the degree of noise al-
lowed by the system operation can be verified (Fig. 4). With
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Figure 4. Average and standard error for each set of 100 trials for the
distance between user’s stress value and the baseline through 50 simu-
lations according to the five kinds of normal distribution ( 0 =10, 20, 30,
40, and 50) of alpha activity.

this verification, it is possible to estimate the degree of per-
formance, which is required for selecting the measurement
device for the biological signals. Moreover, the cost of the
measuring device can be reduced and the subject experiment
can be performed with a design suitable for practical use.

However, there are many limitations in this research. The
biological signals are arbitrarily mapped to probabilistic dis-
tributions. The user model also does not have any learning
ability; it only changes the stress state as a reaction to the
perceived sounds. Therefore, based on the findings in this
experiment, we need to perform an experiment with human
participants to confirm the findings of this research.

CONCLUSION

In this research, we developed a sound presentation agent us-
ing reinforcement learning and multimodal biological signals
that provide adaptive training according to the user’s stress
state with stochastic observation. In addition, we verified the
superiority of using multimodal biological signals through
simulation, and evaluated the system as a preparation stage
for subject experiment. In future, we will conduct subject ex-
periments based on the results of this research, and compare
those results with the simulation results in order to confirm
the validity of the simulation.
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