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ABSTRACT
Existing robot experiments have investigated how machine learning models learn and represent
symbol-grounding relationships from co-occurence of linguistic and sensorimotor sequences. Such
investigations have dealt mainly with grounded words, such as verbs, objectives, adjectives and
adverbs that directly correspond to objects in the environment, to robot motions, or to their certain
features. In contrast, this study includes logical words, which are not grounded in the world directly
but contribute to the construction of meaning as logical operators (“true", “false", “and", “or", etc.),
alongside grounded words. In our experiment, we built and trained a sequence-to-sequence (seq2seq)
learning model that translates linguistic instructions to robot actions. We report how the model learns
to represent logical operations from its experience.
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INTRODUCTION
Investigating possible representations of symbol grounding relations [2] in a bottom-up constructive
manner is important for understanding how human languages work in practice and for building
intelligent communicative agents [1, 6]. From this point of view, many studies have conducted robot
experiments in which machine learning architectures (e.g., probabilistic models, neural networks)
develop various representations of relations between language and its referents in the robot’s world via
iterative experiences [4, 5, 8]. So far, such studies have mainly considered only grounded words, such
as verbs, objectives, adjectives and adverbs that are directly grounded in objects in the environment, in
robot motions, or in their certain features. However, language expressions also include logical words,
such as “not", “and", and “or", which are not directly grounded in the real world but instead act as
logical operators in the construction of the meaning of sentences. This study handles logical words
simultaneously with grounded words. We build a recurrent neural network (RNN) model and train it
by sequence-to-sequence learning [7]. We report how the model learns to represent logical operations
as its functional dynamics from experiences of responding to linguistic instructions by generating
robot actions in response.

METHOD
Model
We built a three-layer LSTM-RNN model [3]. At each time step, the model receives a word, visual
information, the robot’s current joint angles, and the context encoded in its internal memory. From
these, the model generates the joint angles at the next time step. Figure 1 shows an overview of the
model working after learning. After encoding a sentence with sensorimotor information over several
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Figure 1: Overview of working of the RNN model, which translates linguistic instructions to robot
action sequences.

steps, the model generates an appropriate motion sequence. The model is trained in a supervised
manner.

Tasks
Wedesigned two tasks, the flag task and the bell task. Both require the robot to understand instructions
that include both grounded and logical words. For example, in the flag task, the robot might receive a
sentence “do raise red” or “don’t raise red”. In this context “red”, a grounded word, refers to a robot
hand that is grasping a red flag. In contrast, “do” and “don’t” are ungrounded logical words. If the
other parts in these sentences are the same, the meanings is reversed by swapping “do” and “don’t”.
The robot can also receive sentences such as “do raise red and green” and “do lower green or blue”
that include other logical words (“and” and “or”). We train the model with these tasks and investigate
the learned representations of these logical words.

RESULTS
We briefly report some of the results here1. The graphs shown in this section visualize the learned1In the workshop, we will report the results of

analysis in more detail with visualization. representations by using principal component analysis (PCA) to reduce the dimensionality of the
internal state space of the RNN. Figure 2 shows the embedding of “do” and “don’t”. By nonlinear
transformation of the RNN, sentences that share a meaning despite their elements being orthogonal
to each other in the input space are embedded close to one another. For example, “do raise” and “don’t
lower” are both embedded in the left side of the area. In contrast, “don’t raise” and “do lower” are in
the right side of the area. Figure 3 shows the representation of “and” and “or”. The word “or”, which
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instructs the robot to raise (lower) only one of the arms is embedded in the middle area, between
“red” and “blue”. This suggests that “or” is represented as an unstable point of the RNN’s dynamical
system.

SUMMARY AND FUTUREWORK
We built and trained an RNN model to investigate how the model learns and represents logical
operations from experiences of translating linguistic instructions into robot actions. In future work,
we will confirm whether these representations can be achieved even when the task complexity is
higher. We will also investigate a method for analyzing the dynamical aspects of the representations,
particularly how the representation changes during receiving an instruction or generating an action,
to address one shortcoming of using PCA, which is that PCA statically visualizes the states.
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Figure 2: The embeddings of “do” and
“don’t”.
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Figure 3: The embeddings of “and” and
“or”.
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